Abstract

Depth of reservoirs of Hungarian oil fields and related oil density data were collected from the database of the Hungarian Mineral Resource Inventory. The purpose of the investigation was to point out the correlation between oil density and reservoir depth in some of the Hungarian hydrocarbon productive regions. Oil density related to reservoir depth in a particular area is generally linked to the migration mechanism. Zala Basin trends show a different migration process regionally and locally; tertiary migration by overflow mechanism can be supposed for the latter case. In the case of the Szeged–Kiskunsag region, locally and regionally, migration along carrier beds through semipermeable sediments is present, with faults playing a significant role. In the Nagykunsag region, the migration processes are similar to those in Zala, but the presence of faults seems more important. At depths below 2,000 m, the Bihar region trends are similar to those of the Szeged–Kiskunsag region. In the shallower zone, hydrodynamic effects are recognizable. In two studied regions, the Battonya–Pusztafoldvar High and the Hungarian Paleogene Basin, the density of crude oil data does not show any significant variability and trend. Biodegradation and water washing were recognizable in the depth sections shallower than 2,000 m below surface. In karstic reservoirs of the Zala Basin (Nagylengyel, Savoly), alteration is presumed at greater depths due to the karst water flow. The presented results show several trends of oil migration in the explored areas, which can be used for future estimation of the hydrocarbon potential in the Hungarian part of the Pannonian Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call