Abstract

Clozapine is an often prescribed neuroactive pharmaceutical and frequently detected in the aquatic environments. However, its toxicity on low trophic level species (i.e., diatoms) and associated mechanisms are seldom reported. In this study, the toxicity of clozapine on a widely distributed freshwater diatom Navicula sp. was evaluated using the FTIR spectroscopy along with biochemical analyses. The diatoms were exposed to various concentrations of clozapine (0, 0.01, 0.05, 0.10, 0.50, 1.00, 2.00, 5.00 mg/L) for 96 h. The results revealed that clozapine reached up to 392.8 μg/g in the cell wall and 550.4 μg/g within the cells at 5.00 mg/L, suggesting that clozapine could be adsorbed extracellularly and accumulated intracellularly in diatoms. In addition, hormetic effects were displayed on the growth and photosynthetic pigments (chlorophyll a and carotenoid) of Navicula sp., with a promotive effect at concentrations less than 1.00 mg/L while an inhibited effect at concentrations over 2 mg/L. Clozapine induced oxidative stress in Navicula sp., accompanied by decreased levels of total antioxidant capacity (T-AOC) (>0.05 mg/L), in which, the activity of superoxide dismutase (SOD) (at 5.00 mg/L) was increased whereas the activity of catalase (CAT) (>0.05 mg/L) was decreased. Furthermore, FTIR spectroscopic analysis showed that exposure to clozapine resulted in accumulation of lipid peroxidation products, increased sparse β-sheet structures, and altered DNA structures in Navicula sp. This study can facilitate the ecological risk assessment of clozapine in the aquatic ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.