Abstract

Celecoxib is a non-steroidal anti-inflammatory drug that selectively inhibits cyclooxygenase-2 and is prescribed for severe pain and inflammation. The excellent therapeutic effects of celecoxib mean that it is frequently used clinically, including for women of child-bearing age. However, the prenatal effects of this compound have not been studied extensively in vertebrates. The present study examined the developmental toxicity of celecoxib using a frog embryo teratogenic assay-Xenopus (FETAX). In addition, we examined its effects on cell migration using co-cultures of human umbilical vein endothelial cells and 10T1/2 cells. These studies revealed that celecoxib induced concentration-dependent mortality and various malformations of the Xenopus internal organs, including gut miscoiling, haemorrhage, and oedema. Celecoxib also downregulated the expression of vascular wall markers (Msr and alpha smooth muscle actin) and other organ-specific markers (Nkx2.5, Cyl104 and IFABP). In vitro co-culture studies revealed that celecoxib inhibited pericyte migration and differentiation into vascular smooth muscle cells. In conclusion, celecoxib was both toxic and teratogenic in Xenopus embryos, where it produced serious heart and vessel malformation by inhibiting vascular wall maturation and vascular network formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.