Abstract

For a better evaluation of a grouted zone during and after tunnel construction involving weak soil layers, it is necessary to estimate the characteristics of grouted zone effectively. This study suggests a method that can be used for characterizing the time-dependent behavior of pre-reinforced zones around a large section of tunnel in soft ground using elastic waves. Experimental tests were performed to characterize the time-dependent behavior of the pre-reinforced zone. Experimental results show that shear strengths as well as elastic wave velocities increase with the curing time. Thus, shear strength or strength parameters can be uniquely correlated to elastic wave velocities. It is possible to characterize grouted soils around tunnel using elastic waves. Time-dependent strength and stiffness parameters in the experimental tests were applied in a numerical modeling of a large-section tunnel in soft ground, taking into account its construction sequence. According to the results of the numerical modeling, displacement results for fewer than 2~3 days of constant time boundary conditions are nearly identical to the analysis results of the time-dependent condition. The proposed analysis method, which combines experimental and numerical procedures while considering the time-dependent effect of the pre-reinforced zone on the tunnel behavior, will provide a reliable and practical design basis and a means of analysis for large-section tunnels in soft ground.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call