Abstract

By using the Fourier transforms method, the three-dimensional Green's function solution for a unit force applied in an infinite cubic material is evaluated in this paper. Although the elastic behavior of a cubic material can be characterized by only three elastic constants, the explicit solutions of Green's function for a cubic material are not available in the literatures. The central problem for explicitly solving the elastic Green's function of anisotropic materials depends upon the roots of a sextic algebraic equation, which results from the inverse Fourier transforms and is composed of the material constants and position vector parameters. The close form expression of Green's function is presented here in terms of roots of the sextic equation. The sextic equation for an anisotropic cubic material is discussed thoroughly and specific results are given for possible explicit solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.