Abstract

Many optical, thermal and chemical methods exist for the measurement of elemental carbon (EC) but are unable or neglect to differentiate between the different forms of EC such as char- or soot-EC. The thermal/optical reflectance (TOR) method applies different temperatures for measuring EC and organic carbon (OC) contents through programmed, progressive heating in a controlled atmosphere, making available eight separate carbon fractions – four OC, one pyrolyzed organic carbon, and three EC. These fractions were defined by temperature protocol, oxidation atmosphere, and laser-light reflectance/transmittance. Stepwise thermal evolutional oxidation of the TOR method makes it possible to distinguish char- from soot-EC. In this study, different EC reference materials, including char and soot, were used for testing it. The thermograms of EC reference materials showed that activation energy is lower for char- than soot-EC. Low-temperature EC1 (550 °C in a 98% He/2% O 2 atmosphere) is more abundant for char samples. Diesel and n-hexane soot samples exhibit similar EC2 (700 °C in a 98% He/2% O 2 atmosphere) peaks, while carbon black samples peaks at both EC2 and EC3 (800 °C in a 98% He/2% O 2 atmosphere). These results supported the use of the TOR method to discriminate between char- and soot-EC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.