Abstract

Veno-occlusive disease is an important pattern of hepatotoxicity associated with antineoplastic drugs. The study investigated the possible therapeutic effects of RHS nanoparticles combined with a PDGF on veno-occlusive disease (VOD) in liver elicited in rats with DAC. In this work, nanosilica (SiO2) was successfully prepared from rice husk, and its physicochemical characteristics were investigated using EDX, XRD, N2 adsorption-desorption isotherm, SEM, and TEM. Forty-eight male Sprague-Dawely rats were distributed into 6 groups, with 8 rats in each. The first group served as the control. In the second group, animals were infused with DAC (0.015 mg/kg; 1-3 days) by intraperitoneal injection (i.p.). In the third group, rats were injected i.p. with DAC, and then at 24 h following the last dose of DAC, received nano-RHS incorporated with PDGF twice a week for 4 weeks. In the fourth group, normal animals were injected with RHS. In the fifth group, normal rats received PDGF, and in the sixth group, normal rats received nano-RHS combined with PDGF. The prepared nanosilica showed type II adsorption isotherm characteristic for mesoporous materials with a specific surface area of 236 m2/g. TEM imaging confirmed the production of nanoparticles via the followed preparation procedure. Radical scavenging potential for nano-RHS was determined using two different in-vitro assays: DPPH, and ABTS radicals. The results of this work show that administration of nano-RHS combined with PDGF significantly reversed the oxidative stress effects of DAC as evidenced by a decrease in liver function. It can be concluded that the nano-RHS combined with PDGF is useful in preventing oxidative stress and hepatic VOD induced by chemotherapy such as DAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.