Abstract

We study peculiarities of phase transitions in zirconium and properties of the high-temperature β-Zr phase. To get a more detailed understanding of the structure and thermodynamic characteristics of zirconium, we perform atomistic simulations with two different interatomic potentials. Both potentials demonstrate an unstable behavior of β-Zr phase at low temperatures but explain this phenomenon by substantially different reasons. For one of the potentials, the mechanical instability takes place, and for the other potential the instability of β-Zr is purely dynamic. Review of the available experimental data shows that it is more correct to describe β-Zr through the low-temperature dynamic instability. The structure peculiarity discussed for β-Zr leads to a local non-cubic symmetry of this phase and low formation energy of the self-interstitial atoms. The latter leads to fast atomic self-diffusion that is consistent with existing data. We also perform deformation tests for the atomistic models of β-Zr-Nb alloys taking into account the studied details of α-β transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.