Abstract

To assess whether: i) a lower amplitude constant-load MOD is appropriate to determine the mean response time (MRT); ii) the method accurately corrects the dissociation in the V̇O 2 -PO relationship during ramp compared with constant-load exercise when using different ramp slopes. Eighteen participants (7 females) performed three SRS tests including: i) step-transitions into MOD from 20 to 50 W (MOD 50 ) and 80 W (MOD 80 ); and ii) slopes of 15, 30, and 45 W·min -1 . The V̇O 2 and PO at the gas exchange threshold (GET) and the corrected respiratory compensation point (RCP CORR ) were determined. Two to three 30-min constant-load trials evaluated the V̇O 2 and PO at the maximal metabolic steady state (MMSS). There were no differences in V̇O 2 at GET (1.97 ± 0.36, 1.99 ± 0.36, 1.95 ± 0.30 L·min -1 ), and RCP (2.81 ± 0.57, 2.86 ± 0.59, 2.84 ± 0.59) between 15, 30, and 45 W·min -1 ramps, respectively ( P > 0.05). The MRT in seconds was not affected by the amplitude of the MOD or the slope of the ramp (range 19 ± 10 s to 23 ± 20 s; P > 0.05). The mean PO at GET was not significantly affected by the amplitude of the MOD or the slope of the ramp (range 130 ± 30 W to 137 ± 30 W; P > 0.05). The PO at RCP CORR was similar for all conditions ((range 186 ± 43 W to 193 ± 47 W; P > 0.05). The SRS protocol accounts for the V̇O 2 MRT when using smaller amplitude steps, and for the V̇O 2 slow component when using different ramp slopes, allowing for accurate partitioning of the exercise intensity domains in a single test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call