Abstract

Carbon supported Pt and Pt–Co nanoparticles were prepared by reduction of the metal precursors with NaBH 4. The activity for the oxygen reduction reaction (ORR) of the as-prepared Co-containing catalyst was higher than that of pure Pt. 30 h of constant potential operation at 0.8 V, repetitive potential cycling in the range 0.5–1.0 V and thermal treatments were carried out to evaluate their electrochemical stability. Loss of non-alloyed and, to a less extent, alloyed cobalt was observed after the durability tests with the Pt–Co/C catalyst. The loss in ORR activity following durability tests was higher in Pt–Co/C than in Pt/C, i.e. pure Pt showed higher electrochemical stability than the binary catalyst. The lower stability of the Pt–Co catalyst during repetitive potential cycling was not ascribed to Co loss, but to the dissolution–re-deposition of Pt, forming a surface layer of non-alloyed pure Pt. The lower activity of the Pt–Co catalyst than Pt following the thermal treatment, instead, was due to the presence of non-alloyed Co and its oxides on the catalyst surface, hindering the molecular oxygen to reach the Pt sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.