Abstract
AbstractThe sea‐air biological O2 flux assessed from measurements of surface O2 supersaturation in excess of Ar supersaturation (“O2 bioflux”) is increasingly being used to constrain net community production (NCP) in the upper ocean mixed layer. In making these calculations, one generally assumes that NCP is at steady state, mixed layer depth is constant, and there is no O2 exchange across the base of the mixed layer. The object of this paper is to evaluate the magnitude of errors introduced by violations of these assumptions. Therefore, we examine the differences between the sea‐air biological O2 flux and NCP in the Southern Ocean mixed layer as calculated using two ocean biogeochemistry general circulation models. In this approach, NCP is considered a known entity in the prognostic model, whereas O2 bioflux is estimated using the model‐predicted O2/Ar ratio to compute the mixed layer biological O2 saturation and the gas transfer velocity to calculate flux. We find that the simulated biological O2 flux gives an accurate picture of the regional‐scale patterns and trends in model NCP. However, on local scales, violations of the assumptions behind the O2/Ar method lead to significant, non‐uniform differences between model NCP and biological O2 flux. These errors arise from two main sources. First, venting of biological O2 to the atmosphere can be misaligned from NCP in both time and space. Second, vertical fluxes of oxygen across the base of the mixed layer complicate the relationship between NCP and the biological O2 flux. Our calculations show that low values of O2 bioflux correctly register that NCP is also low (<10 mmol m−2 day−1), but fractional errors are large when rates are this low. Values between 10 and 40 mmol m−2 day−1 in areas with intermediate mixed layer depths of 30 to 50 m have the smallest absolute and relative errors. Areas with O2 bioflux higher than 30 mmol m−2 day−1 and mixed layers deeper than 40 m tend to underestimate NCP by up to 20 mmol m−2 day−1. Excluding time periods when mixed layer biological O2 is undersaturated, O2 bioflux underestimates time‐averaged NCP by 5%–15%. If these time periods are included, O2 bioflux underestimates mixed layer NCP by 20%–35% in the Southern Ocean. The higher error estimate is relevant if one wants to estimate seasonal NCP since a significant amount of biological production takes place when mixed layer biological O2 is undersaturated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.