Abstract

Microplastics from mulch films can be a source of chemical contamination to agricultural soils. In this context, biodegradable films have been widely positioned as a greener choice. However, their sorption/desorption capabilities, in contrast to the conventional plastic types remain understudied. It is for this reason that objective evaluation of their interactions with residual agricultural contaminants becomes important. Our findings reveal that polyethylene (PE) mulch films retained lower amounts of pesticide residues and demonstrated a higher desorption/release [median desorption = 71.86 μg/L or about 50%], while polybutylene adipate terephthalate (PBAT) mulch films retained higher amounts of pesticide residues onto their surface and demonstrated a much lower desorption [median desorption = 24.27 μg/L or about 17%] after a spraying event. A higher ambient temperature had no significant effect on final desorption amounts in both PE [median = 65.27 μg/L at 20 °C and 74.23 μg/L at 40 °C] and PBAT [median = 24.26 μg/L at 20 °C and 24.78 μg/L at 40 °C] mulch films. However, it did favour a faster desorption pace in PE films. Desorption in PBAT and PE plastic types was correlated with the log Kow value [Spearman's correlation: 0.857 and 0.837 respectively, p < 0.05]. However, only a moderate correlation with pKa was observed in PBAT [Spearman's correlation: 0.478, p < 0.05], while none for PE plastic type. Sorption of pesticides onto biodegradable PBAT microplastics were best explained by Elovich [R2: 0.937–0.959] and pseudo-second order kinetics [R2: 0.942–0.987], suggesting the presence of chemisorption. Furthermore, Weber Morris plots suggested the presence of a multi-step process and Boyd plots indicated that film diffusion or chemical bond formation was the rate-limiting step governing this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call