Abstract

A solid-phase microextraction (SPME) fiber coated with single walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition and treated at 500 °C in H 2 stream. In order to evaluate the characteristics of the obtained fiber, it was applied in the headspace solid-phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample and quantification by gas chromatography with flame ionization detection (GC-FID). The results indicated that the thermal treatment with H 2 enhanced the extraction of the SWCNTs fiber for BTEX significantly. Thermal stability and durability of the fiber were also investigated, showing excellent stability up to 350 °C and life time over 120 times. In the comparison with the commercial CAR–PDMS fiber, the SWCNTs fiber showed similar and higher extraction efficiencies for BTEX. Under the optimized conditions, the linearity, LODs (S/N = 3) and LOQs (S/N = 10) of the method based on the SWCNTs fiber were 0.5–50.0, 0.005–0.026 and 0.017–0.088 μg/L, respectively. Repeatability for one fiber ( n = 3) was in the range of 1.5–5.6% and fiber-to-fiber reproducibility ( n = 3) was in the range of 4.2–8.3%. The proposed method was successfully applied in the analysis of BTEX compounds in seawater, tap water and wastewater from a paint plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call