Abstract

Early age cracking in concrete is caused by a combination of the chemical and autogenous shrinkage caused by the exhaustion of the water in the pores during the hydration of cement phases. Generally, this process takes place in the first 72 h of concrete casting. The use of supplementary cementitious materials (SCMs) can mitigate cracking due to several factors, among them: dilution effect, provision of extra nucleation sites due to the high specific surface of the SCMs, and the increased water retention associated with the presence of fine SCMs. This paper compares the impact of two SCMs systems on early age cracking of the following concretes: (i) pozzolanic cement with natural pozzolan (zeolite) and (ii) a ternary binder limestone-calcined clay cement (LC3). The study was Carried out on cement paste and concrete. The addition of calcined clay and limestone decreases early age cracking better than in any other system, including the Portland-pozzolan system. It is related to a lower clinker factor and improved hydration of the system, and a better-developed microstructure at early ages due to the energetic reaction of the alumina phase C3A, enhanced by the extra alumina (Al2O3) provided by the calcined clay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call