Abstract
Binding of agonists to adenosine receptors is reduced by GTP, whereas it is enhanced by Mg2+. The effect of GTP can be completely reversed by divalent cations, in contrast to the effect of the nonhydrolyzable analogue 5'-guanylylimidodiphosphate (GPPNHP). The present study addresses the role of divalent cation-stimulated specific and nonspecific GTP-ases in this reversal process. Under the conditions commonly employed in binding assays, almost all GTP is rapidly converted to GMP and Pi, indicating that maintenance of GTP levels is essential for the proper interpretation of results. A combination of a GTP-generating system and a competing substrate for high Km GTP-ases minimizes GTP breakdown. In the presence of these additions, the reversal of GTP effects is almost eliminated, and the inhibitory effects of both GTP and GPPNHP on agonist binding are reduced by divalent cations to a similar extent. Besides enhancing nonspecific GTP hydrolysis, Mg2+, but not Mn2+ or Ca2+, also stimulates specific agonist-dependent GTP-ase activity. Thus, it is evident that specific regulatory effects of Mg2+ and other divalent cations can only be identified when other, nonspecific, effects have been evaluated and controlled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.