Abstract

(Bio)pharmaceutical products freeze-dried in vials must meet stringent quality specifications: among these, the residual moisture (RM) is crucial. The most common techniques adopted for measuring the RM are destructive, e.g. Karl Fisher titration, thus few samples from each batch are tested. Being a high intra-batch variability an intrinsic feature of batch freeze-drying, a high number of samples needs to be tested to get a representative measurement. Near-Infrared (NIR) spectroscopy was extensively applied in the past as a non-invasive method to quantify the RM. In this paper, an accurate Partial Least Square (PLS) model was developed and calibrated with a single product, focusing on a small but significative wavelength range of NIR spectra (model SR), characteristic of the water and not of the product. The salient feature of this approach is that the model SR appears to provide fairly accurate estimates with the same product but at a higher concentration, with other excipients and in presence of an amino acid at high concentration, without requiring any additional calibration with KF analysis, as in previous techniques; the irrelevance of the vial shape was also shown. This approach was compared to a simpler one, based on a single-variable linear regression, and to more complex one, using a wider wavelength range or calibrating the PLS model with several products. Model SR definitely ended up as the most accurate, and it appeared to have a great potential as a robust model, suitable also for products that were not involved in the calibration step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.