Abstract

The demand for broadening fatigue crack growth behavior has increased owing to the extended use of hydrogen gas as an energy carrier, and it is known that high-pressure hydrogen has a major effect on fatigue crack growth behavior. In this study, the effect of high-pressure hydrogen on an SA-372 Grade J steel pressure vessel was analyzed using fatigue crack growth testing, fracture toughness testing, and finite element analysis. A test was performed to compare the fatigue crack growth of SA-372 Grade J steel in ambient air and 99-MPa hydrogen environments. The test results, including the identified degradation of fracture toughness and the presence of hydrogen inflection in the fatigue crack growth rate, were used in the finite element analysis to analyze the fatigue crack growth behavior under various loading and environmental conditions. The residual fatigue life was evaluated considering the morphological evolution of the crack during growth, the initial aspect ratio, and the initial crack-to-depth ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.