Abstract

The amount of Arctic sea ice predicted by the Hadley Centre Global Cilimate Model (GCM) is evaluated using 15 years of passive-microwave data. While the Hadley model reproduces the seasonal cycle reasonably well, it underestimates the total area of sea ice by more than 3 × 106km2for most of the year. In the winter months, most of the underestimate in ice area results from the prediction of far too little ice in Hudson Bay and the Sea of Okhotsk, leading to an excess of up to 0.2 PW heat input to the atmosphere from Hudson Bay alone. The surface-energy budget of Hudson Bay is investigated using a mixture of surface observations (POLES), satellite data (ATSR, SSM/I and ISCCP) and output from the Goddard Data Assimilation Office analysis. Flux adjustments of the order of 200 Wm−2, resulting from anomalously high sea-surface temperatures in the Levitus (1982) climatology, are found to be the cause of the model’s underestimation of sea ice in both Hudson Bay and the Sea of Okhotsk. The fact that flux adjustments based on an inaccurate climatology will produce errors, even if the model physics is correct, underlines the need both for improved climatologies and for models accurate enough not to require flux adjustment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.