Abstract

The nitric oxide (NO)-independent soluble guanylyl cyclase stimulator stimulator BAY 41-2272 was reported to produce relaxant response in different types of smooth muscle. However no study was carried out to investigate the effects of BAY 412282 in detrusor smooth muscle. Thus, this study aimed to evaluate the relaxant effects of BAY 41-2272, in isolated mouse, rat and rabbit detrusor smooth muscle. Mouse, rat and rabbit were anesthetized, and urinary bladder removed. Detrusor smooth muscle was transferred to 10-mL organ baths containing oxygenated and warmed Krebs-Henseleit solution. Tissues were connected to force-displacement transducers and changes in isometric force were recorded. BAY 41-2272 (0.001-100 microM) produced concentration-dependent detrusor smooth muscle relaxations in mouse, rat and rabbit with maximal responses of 61.3+/-6.6%, 95.1+/-9.9% and 91.7+/-5.9%, respectively. Sodium nitroprusside and glyceryl trinitrate, as well as 8-bromo-cGMP also produced detrusor relaxations, but to a much lesser extent than BAY 41-2272. The NO synthesis inhibitor L-NAME and the phosphodiesterase-5 inhibitor sildenafil had no effect in BAY 41-2272-induced responses. However, the soluble guanylyl cyclase inhibitor ODQ significantly reduced BAY 41-2272-induced relaxations. BAY 41-2272 increased the bladder cGMP levels by about of 14- and 20-fold for 10 and 100 microM, respectively, which were markedly reduced by ODQ. The cAMP levels were unaffected by BAY 41-2272. Moreover, BAY 41-2272 significantly reduced the contractile responses to extracellular Ca(2+) in an ODQ-insensitive manner. In conclusion, rabbit detrusor smooth muscle relaxations by BAY 41-2272 involve mainly cGMP production, but an additional mechanism involving Ca(2+) influx blockade independently of cGMP production appears to be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.