Abstract

Streptomyces coelicolor is a soil-dwelling bacterium that is medically important due to its ability to produce several antibiotics, and nickel accumulation within this organism has been shown to prevent the production of the antibiotic undecylprodigiosin. The transcriptional repressor important in regulation of nickel uptake is the homodimeric Nur, a member of the Fur family. Nur contains two metal-binding sites per monomer: the M-site and the Ni-site. The work described here seeks to determine the roles of each of the metal-binding sites to establish a model of Nur activity through mutational studies, metal titrations, and fluorescence anisotropy. Through these studies, a model of Nur activity is proposed in which femtomolar metal binding to one M-site of Nur prompts DNA-binding, and metal binding to the second M-site fully activates the protein. Evidence is provided that shows cooperative metal binding to the Ni-site, but this process dampens affinity for promoter DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.