Abstract

Under the appropriate separation conditions the pulsed discharge helium ionization detector (PDHID) was used to detect hydrogen and methane separated from the matrix components of human breath samples. The sensitivity of this method is over an order of magnitude better than published methods using a flame ionization detector (FID) and a thermal conductivity detector (TCD), and has the further advantage of detecting both analytes with only one detector. Limits of detection were 0.3 ppmv for both hydrogen and methane and the method had a linear dynamic range (LDR) of three orders of magnitude (0.3–400 ppm, v/v). The PDHID was also compared to the FID and the TCD in regard to selectivity, sensitivity and reproducibility for high-speed gas chromatography (HSGC). It was shown that the PDHID is as sensitive as the FID for fast separations but is limited by the difficulty of resolving analyte peaks from O 2 and N 2. The PDHID was at least three orders of magnitude more sensitive than the TCD for all of the analytes examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call