Abstract

The inhibition of bone destruction is one of the main goals of periodontitis treatment. The aim of this study was to investigate the protective effects of non-thermal atmospheric plasma (NTAP) on alveolar bone loss radiographically, histomorphometrically, and histologically in experimental periodontitis in rats. A total of twenty-eight rats were randomly divided into three groups: control group (CG) (n = 8), periodontitis group (PG) (n = 10), and NTAP group (NTAPG) (n = 10). In PG and NTAPG, experimental periodontitis was created with ligating. The kINPen 11 plasma jet was applied around the ligatured teeth in NTAPG. The samples from each group were radiographically assessed with microcomputed tomography (micro-CT); then, histological (presence of osteoclasts and inflammatory cells) and immunohistochemical (immunoreactive of OCN and ALP) findings were compared. The results revealed a significant increase in alveolar bone loss in the PG compared with CG and NTAPG (p < 0.05). Inflammation, alveolar resorption, and cement damage were reduced significantly in the group treated with NTAP compared to the PG (p < 0.05). Significantly higher levels of osteoclasts were detected in the PG in comparison with both CG and NTAPG (p < 0.05). The lowest osteocalcin and ALP values were determined in PG, and the differences between PG and both groups were also significant (p < 0.05). Within the limitations of the present study, we can say that NTAP may enhance the bone remodeling process by inhibiting inflammation and preventing alveolar bone destruction. NTAP has clinical potential for accelerating and treating periodontitis with the inflammatory response modulation, osteoblast differentiation, and alveolar bone loss reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.