Abstract
Objectives: To show renal parenchymal injury depending on extracorporeal shock wave lithotripsy (ESWL). Methods: The patients with one renal stone and in whom ESWL is planned among the patients in whom renal stone was determined. Their 24-h urine samples were collected just before and after the ESWL treatment. Cit (citrate), UrA (uric acid), RBP (retinol-binding protein), NAG (N-acetyl-β-Đ-glucosaminidase), Cr (creatinine), Na (sodium), K (potassium), P (phosphor), Ca (calcium), and Cl (chlorine) metabolites excreted in urine were evaluated after urine samples were taken on the study day. Changes in the metabolites excreted; the number, frequency, and duration of ESWL shock wave; the energy; and the body mass index were recorded. The results for p < 0.05 will be accepted as statistically significant. Results: Two sessions of ESWL were applied to a total of 20 patients. When metabolites excreted in the urine before (B1E) and after (A1E) the first session of ESWL, and before (B2E) and after (A2E) the second session of ESWL, were evaluated, no statistically significant result for Ca and Cl excretion was noted. For NAG and Cr, a significant difference was observed in terms of metabolite excretion between B1E and B2E. For other metabolites, we saw that there is no difference between B1E and B2E. While a significant metabolite change was observed for RBP, NAG, Cr, and Na as long as A1E and A2E ESWL session number increases, other metabolites were not significant. Conclusion: Shock waves induce significant damage to the renal and adjacent tissues as indicated by a significant increase in cell-escaped enzymes and electrolytes and the extent of damage depends on the energy and the number of shock wave exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.