Abstract

Parasitic wasps inject their eggs, together with a complex venom mixture, in or on other insects. Parasitoid venoms use various mechanisms to manipulate the physiology and suppress the immune system of their hosts, thus enabling the growth and development of their offspring. Since the major mechanisms of innate immunity in insects are homologous to the Nuclear Factor kappa B (NF-κB) pathway in mammalian immunity, this study hypothesized that venom related immune suppression observed in host insects could also be observed in mammalian cells. Therefore, an NF-κB-dependent luciferase assay was used to determine the effects of P. turionellae venom on murine fibrosarcoma L929sA cells. Results from an MTT assay showed that venom from P. turionellae has no cytotoxic effects on L929sA cell lines when taking into account a defined range of exposure time and concentrations. Also, the present study indicated that endoparasitoid P. turionellae venom has potential to inhibit NF-κB signaling in cells of mammals at nontoxic concentrations. In conclusion, venom components from ecto- or endoparasitoid wasps have anti-inflammatory potential on increased immune responses of mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call