Abstract
According to the various independent studies conducted, it is well evident fact that radiation induces oxidative stress in the living system. It is also proved that this oxidative stress will lead to the various behavioural changes such as anxiety and memory impairment. Kinetin is one of the important plant cytokine with anti-aging properties. However, very few studies were conducted to check its potential in ameliorating the behavioural changes induced by the ionizing radiation. This study was aimed to check the potential of kinetin in ameliorating the radiation induced behavioural changes in albino mice. In this study, survival analysis was performed using three different dose of kinetin intervention along with, one radiation control group and one normal control group (n=50). Based on the cumulative survival rate, single effective dose of kinetin was selected and used to evaluate the behavioural changes induced by radiation. The open field apparatus was used to evaluate the anxiety level (n=18, six in each group). Eight armed radial maze was used to evaluate the memory and learning ability in mice model. Survival study results suggest 100 mg/kg body weight of kinetin showed highest cumulative survival rate. Therefore, this dose was selected as an effective drug dose for further study. Analysis also showed 6 Gy whole body electron beam radiation had significantly increased anxiety level, increased duration to complete the task as well as mistakes done during the task. Further, kinetin intervention had significantly ameliorated the same. A 100 mg/kg body weight of kinetin intervention helps in reducing the anxiety and improves the learning ability in mice exposed to electron beam radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of clinical and diagnostic research : JCDR
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.