Abstract

The use of reinforced concrete is foundational to modern infrastructure. Acknowledging this, it is imperative that health monitoring techniques be in place to study corrosion within these structures. By using a non-destructive method for detecting the early formation of cracks within reinforced concrete, the method presented in this paper seeks to improve upon traditional techniques of monitoring corrosion, within reinforced concrete structures. In this paper, the authors present a method to evaluate the physical characteristics of reinforced concrete subject to corrosion using a poro-elastic acoustic model inversion technique applied to a set of ultrasonic measurements, which constitutes a novel approach to the problem of observing the impact of corroding rebars and resulting concrete damage. A non-contact ultrasonic transducer is operated at a carrier frequency of 500 [kHz], with a layer of saltwater separating the sensor from the concrete surface. Following this non-contact measurement collection of the surface and rebar echo responses, a poro-elastic model is used to model the sound propagation, through an adapted version of the Biot-Stoll model. At first, a set of default parameters, obtained from the physical characteristics of the reinforced concrete, are used to match experimental and simulated acoustic signature of the sample. Performing statistical averaging along the corroding rebar within three samples over a period of nearly nine months, a small but monotonous increase in the distance between the concrete surface and the top of the rebar, indicating gradual corrosion of the rebar. Next, a non-linear optimization algorithm is used to optimize the match between measured and simulated echoes. Through the implementation of this model parameter optimization, the root mean square error between measured and simulated responses was reduced by 63.7% for the full signal, and 62.6% for the rebar echo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.