Abstract

Performance of three kinds of bridge-type fault current limiters (BTFCLs) for enhancing low-voltage-ride-through (LVRT) capability of DFIG is evaluated in this paper. The common BTFCL can effectively enhance the LVRT capability of DFIG. However, the fault-current-limiting inductor (FCLI) is periodically inserted into the stator circuit under normal operation for compensating power losses of the FCLI. The periodically insertion of the FCLI induces stator voltage spikes, which causes significant stator flux and electromagnetic torque oscillations. One feasible way to solve this problem is to use an additional current-regulating circuit (CRC). However, the additional CRC increases hardware cost, reduces reliability of the whole system, and induces more power losses. To solve this problem, a BTFCL with bypass resistor (BTFCL-BR) is presented. The BR absorbs the majority of the current harmonics during normal operation and eliminates the stator voltage spikes. The flux and electromagnetic torque oscillations can thus be significantly reduced. The performance of three kinds of BTFCLs is evaluated by simulation and experimental studies on a typical 1.5 MW wind turbine driven DFIG system and a 2 kW DFIG prototype. By simulation and experimental evaluations, it seems that the BTFCL-BR approach is the most promising solutions among the three kinds of BTFCLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.