Abstract
Polychlorinated diphenyl ethers (PCDEs) are a class of potential persistent organic contaminants, which have been widely detected in aquatic environment. In the present study, the effects of 3,4,4'-tri-CDE and its two possible metabolites (2-MeO-3',4,4'-tri-CDE and 2-HO-3',4,4'-tri-CDE) on oxidative stress biomarkers in liver of Carassius auratus were evaluated. The fish were treated with these three compounds at different doses (0.1, 1, and 10μg/L) via semi-static water exposure. The liver samples were individually taken at 3, 7, and 21days for analysis of oxidative stress indicators, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and malondialdehyde (MDA). Compare to the control group, the hepatic antioxidant enzyme activity and GSH contents showed significant decreases (p < 0.05) at high-dose treatment (10μg/L) and prolonged exposure time (21days) in most of the toxicant-treated groups, indicating the occurrence of oxidative stress in fish liver. However, no consistent trend of the variations of antioxidant parameters was observed at low doses (0.1 and 1μg/L). Meanwhile, the lipid peroxidation was significantly induced with extending exposure time and increasing dose. In addition, the toxicity order of three compounds was discussed using the integrated biomarker response (IBR) index. Notably, 2-HO-3',4,4'-tri-CDE was indicated to cause the most severe hepatic oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.