Abstract

Nano-hydroxyapatite (n-HA) reinforced poly(propylene carbonate) (PPC) composites were prepared for bone repair and reconstruction. The effects of reinforcement on the morphology, mechanical properties and biological performance of n-HA/PPC composites were investigated. The surface morphology and mechanical properties of the composites were characterized by scanning electron microscopy (SEM) and universal material testing machine. The analytical data showed that good incorporation and dispersion of n-HA crystals could be obtained in the PPC matrix at a 30:70 weight ratio. With the increase of n-HA content, the tensile strength increased and the fracture elongation rate decreased. In vitro cell culture revealed that the composite was favorable template for cell attachment and growth. In vivo implantation in femoral condyle defects of rabbits confirmed that the n-HA/PPC composite had good biocompatibility and gradual biodegradability, exhibiting good performance in guided bone regeneration. The results demonstrates that the incorporation of n-HA crystals into PPC matrix provides a practical way to produce biodegradable and cost-competitive composites mimicking the osteogenic niche for bone augmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.