Abstract

Wood biomass is an alternative to fossil fuels. However, biomass use has several limitations. Torrefaction, in which reduction conditions prevail to overcome these limitations, has been suggested. Here, torrefaction using different wood chips (Liriodendron tulipifera, Populus canadensis, Pinus rigida, and Pinus koraiensis) was conducted under oxygen-rich and oxygen-lean conditions to determine the effects of oxygen. Torrefaction was conducted at 230–310 °C for 1 h. A mass yield difference of 3.53–20.02% p (percentage point) was observed between oxygen-lean and oxygen-rich conditions. The calorific value increased by a maximum of 50.95% and 48.48% under oxygen-rich and oxygen-lean conditions, respectively. Decarbonization (DC), dehydrogenation (DH), and deoxygenation (DO) occurred in the following order because of dehydration and devolatilization during biomass torrefaction: DO > DH > DC. The calorific value of the torrefied biomass increased linearly with the extent of all three processes. The combustibility index and volatile ignitability were calculated based on proximate composition to suggest the optimal conditions for replacing anthracite and bituminous coal. This study provides suggestions for stable operation in a standard boiler design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call