Abstract

The Canadian highway bridge design code (CHBDC) contains provisions for designing concrete members with fiber-reinforced polymer (FRP) reinforcement. In the second edition of the code, new shear design procedures for FRP-reinforced sections are provided. These procedures are consistent with those for steel-reinforced members in the code, in consideration of some modifications that account for the substantial differences between FRP and steel reinforcement. The shear approach adopted in the CHBDC follows the traditional approach of Vc + Vs for shear design. This paper presents an evaluation of this approach by comparing it with experimental shear strengths of available test data on beams longitudinally reinforced with FRP bars and with or without FRP stirrups. In addition, the CHBDC approach was compared with the FRP shear design provisions currently in effect in North America using the available test results. The comparison shows that the CHBDC method significantly underestimates the shear strength of FRP-reinforced concrete beams. A proposed modification to this method is presented and verified against available test results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call