Abstract

The nanostructure of polysaccharides is supposed to determine properties such as stiffness or diffusivity of cell walls and their functionality for various tailored properties of food. However, at present, a relation of these nano-properties with sensory texture and firmness remains to some degree unknown. In this work, water (WSP), calcium chelator (CSP) and sodium carbonate (DASP) soluble pectins, hemicellulose and cellulose, extracted from cell walls of two pear cultivars ‘Xenia’ and ‘Conference’ at their harvest times, were studied. An atomic force microscope and image analysis were used to evaluate diameter and branching of the molecules. Sensory texture of ‘Xenia’ was considered as better and its firmness (87 N) was higher than ‘Conference’ (76 N). WSP molecules were present as short molecules with a height of about 0.5 nm for both cultivars. A chain-like and branched CSP fraction had diameter of about 0.3–0.4 nm for both cultivars with a pronounced contribution of molecules with diameter of about 1 nm for ‘Xenia’, which had also higher branching index. DASP revealed similar regular structures for both cultivars however the network was much denser for ‘Xenia’. A rod-like hemicellulose molecules had length of about 20–400 nm and diameter of 1 nm for ‘Xenia’ and 1–4 nm for ‘Conference’. Cellulose diameter for both cultivars was about 23 nm. This study showed that less degraded, thicker and more branched pectin molecules were associated with higher firmness and more favourable texture. Hemicellulose provided a positive contribution to texture when they were thinner and more flexible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.