Abstract

A comprehensive understanding of Ca cycling in an ecosystem is desirable because of the role of this element in tree mineral nutrition and its status as a major base cation on the soil exchange complex. The determination of the origin of Ca in forests is particularly indicated in regard of important changes linked to acid inputs and intensive logging. Natural strontium isotopes are increasingly used as tracers of Ca in forest ecosystems for qualitative and quantitative assessments. Nevertheless this method is limited to relatively simple systems with two sources of nutrients. Some recent studies coupled Sr/Ca or Sr/Ba ratios to Sr isotopic measurements in order to solve more complex systems. Such method has however associated with it some uncertainties: this approach assumed that Ca, Sr and Ba behave similarly throughout the ecosystem and does not take into account the Ca biopurification processes occurring in some tree’s organs which can alter element ratio. The present work focuses on two deciduous species covering large areas in Europe: European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.). In order to test the similarity of behaviour between Ca, Sr and Ba, their concentrations were measured extensively in the major compartments of two forest ecosystems. In parallel, the discrimination process inside tree organs was studied in 23 stands for beech and 10 stands for oak. We found that Sr and Ca behave similarly in all soil and tree compartments. By contrast, Ba and Ca appear to have contrasting behaviours, especially in streams, soil solution and soil exchange complex (no correlations between element concentrations). Sr/Ba and Ba/Ca ratios must therefore be used with care as tracer of Ca. The Ca biopurification is absent in roots and slight in bole wood but is large in bark, twigs and leaves. The discrimination factors (DF) between wood and leaves are characteristic of the two species studied and do not change significantly as a function of the soil Ca status (acidic or calcareous soils). Therefore, strontium–calcium DF can be used as a correction factor of the Sr/Ca ratio of leaves when this ratio is used in connection with Sr isotopic ratios. This correction allows to solve systems of tree nutrition with more than two sources of Ca.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.