Abstract

The objectives of this study are to evaluate the contributions of the popliteofibular ligament (PFL), the popliteus tendon (PT), and the lateral (fibular) collateral ligament (LCL) to the posterolateral stability of the knee by changing the sequence of selective transection. Twelve fresh-frozen cadaveric knees were divided into two groups. Group 1 has a cutting sequence as follows: PFL, PT, LCL. Group 2 has a cutting sequence as follows: PT, PFL, LCL. Each specimen was mounted on the apparatuses using the Ilizarov external fixator for measuring external rotatory and varus laxities at every 30 degrees from 0 degrees to 90 degrees of knee flexion. In both groups, there was no significant difference between the PFL and PT in the increment of respective external rotatory laxity after transection at each knee flexion angle, except 0 degrees in group 2. The transection of the LCL significantly increased the external rotation laxity at 0 degrees and 30 degrees . Varus instability was increased significantly only after cutting the LCL at every knee flexion angle. In conclusion, both the PFL and PT equally contribute to the external rotatory stability. The LCL also contributes to the external rotatory stability at early range of knee flexion. The LCL is a main structure for varus stability in the knee.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.