Abstract

According to the literature review, limited studies were performed related to the production of "without fastener and ready to assemble (RTA)" furniture made of wood-based panel materials with Computer Numerical Control (CNC) machines and the evaluation of their strength. The aim of this study was to evaluate the cyclic loading performance of different types of RTA chairs without fastener which produced with CNC machines by using engineering design approach and product engineering methods including performance tests. In the production of chairs, 18 mm thick oriented strand board, medium density fiberboard and Oriental beech plywood were utilized as wood-based panels. Within the scope of the study, 4 different chair types without fasteners were designed and produced, and performance tests were carried out in 3 different loading directions (front to back, back to front and side thrust) with cyclic stepped increasing loading method according to the principles of American Library Association specification. Totally, 108 real size chairs without fastener were prepared and tested. As a result of the study, it was concluded that the chairs produced from Oriental beech plywood gave the best performances, while the chairs produced from medium density fiberboard gave performance values close to Oriental beech plywood, except for the side thrust test. However, the mechanical performance values of the chairs constructed of oriented strand board were very low. In conclusion, it could be said that the chairs constructed of Oriental beech plywood and medium density fiberboard without fastener have been found to have sufficient mechanical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.