Abstract

The material properties of an oxygen-free high thermal conductivity (OFHC) film with a thickness of 0.1 mm were evaluated at strain rates ranging from 10−3/s to 103/s using a high-speed material micro-testing machine (HSMMTM). The high strain-rate material properties of thin films are important especially for an evaluation of the structural reliability of micro-formed parts and MEMS products. The high strain-rate material testing methods of thin films, however, have yet to be established to the point that the testing methods of larger specimens for electronics, auto-body, train, ship, and ocean structures are. For evaluation, a new type of HSMMTM was developed to conduct high-speed tensile tests of thin films. This machine is capable of testing at a sufficiently high tensile speed with an electromagnetic actuator, a novel gripping mechanism, and an accurate load measurement system. The OFHC copper film shows high strain-rate sensitivity in terms of the flow stress, fracture elongation, and strain hardening. These measures increase as the tensile strain rate increases. The rate-dependent material properties of an OFHC copper film are also compared with those of a bulk OFHC copper sheet with a thickness of 1 mm. The flow stress of an OFHC copper film is relatively low compared to that of a bulk OFHC copper sheet in the entire range of strain rates, while the fracture elongation of an OFHC copper film is much larger than that of a bulk OFHC copper sheet. A quantitative comparison would provide material data at high strain rates for the design and analysis of micro-appliances and different types of micro-equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.