Abstract
A precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II genetic algorithms. The method is used in drying. The maximization of coefficient of correlation (R) and simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) between the model and experimental data were taken into account. The Biot number and moisture diffusion coefficient can be determined using the following equations: Bi = 0.7647141 + 10.1689977s − 0.003400086T + 948.715758s2 + 0.000024316T2 − 0.12478256sT, D = 1.27547936∙10−7 − 2.3808∙10−5s − 5.08365633∙10−9T + 0.0030005179s2 + 4.266495∙10−11T2 + 8.33633∙10−7sT or Bi = 0.764714 + 10.1689091s − 0.003400089T + 948.715738s2 + 0.000024316T2 − 0.12478252sT, D = 1.27547948∙10−7 − 2.3806∙10−5s − 5.08365753∙10−9T + 0.0030005175s2 + 4.266493∙10−11T2 + 8.336334∙10−7sT. The results of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows: R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and RMSE = 0.050273, respectively.
Highlights
The diffusion coefficient (D) is an important mass exchange parameter
The discussed coefficient is affected by intermolecular interaction and depends on solution concentration and kind of substances [1]. The diffusivity of such substances in food as water, salt, small organic acids or aromas is determined in the literature [2]
Rattanakijsuntorn et al [5] developed the technique of measurement of the drugs diffusion coefficient in the vitreous humor using Finite Element
Summary
The diffusion coefficient (D) is an important mass exchange parameter. The values of this property are needed in the mathematical description of various processes. The discussed coefficient is affected by intermolecular interaction and depends on solution concentration and kind of substances [1]. The diffusivity of such substances in food as water, salt, small organic acids or aromas is determined in the literature [2]. Gross and Ruegg [3] measured the diffusion coefficient of salt and aroma in gels and salt in cheese. Rattanakijsuntorn et al [5] developed the technique of measurement of the drugs diffusion coefficient in the vitreous humor using Finite Element
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.