Abstract

The J-PARC Muon <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$g-2$</tex-math></inline-formula> /EDM Experiment uses a superconducting solenoid magnet to store positive muons, which generates a magnetic field of 3T. A highly uniform magnetic field is required, which is less than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.2\, \rm{ppm}_\rm{p-p}$</tex-math></inline-formula> (peak-to-peak) in a muon storage region of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(333\pm 15) \rm{mm}$</tex-math></inline-formula> in radius and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm 50 \rm{mm}$</tex-math></inline-formula> in height around the magnet center. The magnetic field error due to manufacturing tolerance was evaluated with a Monte Carlo simulation. This paper introduces the evaluation of magnetic field error due to manufacturing tolerance with a Monte Carlo simulation implemented in C++17. Assuming tolerance to be within <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.1\, \rm{mm}$</tex-math></inline-formula> or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.1\, \rm{mrad}$</tex-math></inline-formula> , the uniformity was calculated to be <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$179\, \rm{ppm}_\rm{p-p}$</tex-math></inline-formula> at the worst case. We performed shimming simulation by using truncated singular value decomposition regularization. As a result, it was confirmed that the worst field error could be compensated to the uniformity of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.17\, \rm{ppm}_\rm{p-p}$</tex-math></inline-formula> with a present shimming system. Furthermore, we performed the shimming simulation for wider range of the manufacturing tolerances to investigate the shimming system limit. We concluded that the magnet had to be manufactured with an accuracy less than at least <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.5\, \rm{mm}$</tex-math></inline-formula> or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.5\, \rm{mrad}$</tex-math></inline-formula> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call