Abstract
Non-conventional machining processes offer various advantages, including the capability of processing hard-to-cut materials with a reasonable cost and sufficient productivity. However, depending on the application, different machining strategies need to be employed, in order to increase the flexibility of the process and produce parts with a better quality. In this study, experimental work was conducted and the use of a multipass strategy during slot milling of titanium alloy with abrasive water jet milling (AWJM) was explored, by comparing the effect of different numbers of passes under different process conditions, such as the jet pressure and traverse feed rate. The performance was evaluated by means of the kerf characteristics, and the productivity through material removal rate (MRR) values. The results indicated that the use of a multipass strategy had a considerable impact on the kerf taper angle, apart from the depth of penetration; and although it leads to reduced MRR and cutting efficiency, choosing appropriate values of process parameters, such as a higher jet pressure and moderate traverse feed, in combination with a moderate amount of passes, can be beneficial for AWJM from different points of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.