Abstract

Abstract. The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterisation and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.

Highlights

  • The Monitoring Atmospheric Composition and Climate (MACC) system proved capable of reproducing reactive gas concentrations with consistent quality; with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface

  • Large negative MNMBs over the whole period September 2009 to December 2012 (−30 to −82 %) are observed for stations located in Antarctica (Neumayer (NEU), South Pole (SPO), Syowa (SYO) and Concordia (CON)) whereby O3 surface mixing ratios are strongly underestimated by the model

  • The MACC_osuite is the global near-real-time MACC model analysis run for aerosol and reactive gases

Read more

Summary

Introduction

The impact of reactive gases on climate, human health and the environment has gained increasing public and scientific interest in the last decade (Bell et al, 2006; Cape 2008; Mohnen et al, 1993; Seinfeld and Pandis 2006; Selin et al, 2009) as air pollutants such as carbon monoxide (CO), nitrogen oxides (NOx) and ozone (O3) are known to have acute and chronic effects on human health, ranging from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults (Bell et al, 2006; Kampa and Castanas, 2006). The European Union (EU)-funded research project Monitoring Atmospheric Composition and Climate (MACC) (consisting of a series of European projects, MACC to MACC-III), provides the preparatory work that will form the basis of the European Union’s Copernicus Atmosphere Monitoring Service (CAMS). This service was established by the EU to provide a range of products of societal and environmental value with the aim to help European governments respond to climate change and air quality problems (more information about this service can be found on CAMS website http://www.copernicus.eu/main/ atmosphere-monitoring). Validation reports are updated regularly and are available on the MACC websites

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call