Abstract
AbstractThe low-cycle fatigue (LCF) behavior of steel in energy-dissipating seismic connections is an important consideration, especially in light of the interest in performance-based seismic design. In this study, the LCF performance of seven steel bar types (AISI 8620, 1018, 1045, 1117, 1215, 4140 and ASTM A36 steel) was experimentally examined and compared. The bar specimens were subjected to sinusoidal strains of constant amplitude from zero to peak strains of 4%, 6%, or 8%. Equations that relate the applied strain amplitudes with the number of cycles to failure were developed and compared. In addition, relationships for calculating the total dissipated energy corresponding to the applied strain amplitude were proposed based on the experimental results. This study demonstrated that, in general, the LCF resistance of AISI 1045 steel type outperformed the other steel materials at a strain amplitude of ±2%. However, at ±3 and ±4% strain amplitudes, the LCF lives of ASTM A36 and AISI 1117 bars outperforme...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.