Abstract
Abstract At national, regional and global level, there is no doubt that the electric generation from fossil fuel-fired power plants is one of the greatest causes of air pollution and climate change. However, fossil fuels contribute more than 70% in the planet electricity generation during the last 30 years. In Greece, lignite is the only proved significant indigenous fossil fuel source, currently representing about 50% of the national electricity generation (a situation which is not expected to change dramatically in the near future). As a result, owed to the use of local lignite reserves (poor quality lignite), the Greek Lignite Thermal Power Stations (LTPSs) are responsible for the production of significant airborne emissions and particle releases (e.g. CO2, SO2, NOX, PM). At the same time, Greece, on top of the Kyoto Protocol, has accepted specific obligations and incorporated into its national legislation several air quality Directives concerning the reduction of various harmful gases and particle releases attributed to fossil fuel combustion. Thus, wide scrutiny of concentration time series of all these airborne emissions constitutes an important indicator of the current technology used, considering at the same time that any violation noted should be the object of serious national concern. Under this argument, the current work presents and evaluates the long-term environmental performance of the Greek lignite-based electricity generation system as far as CO2, NOX, SO2 and PM are concerned up to the year 2011. According to the results obtained, one may rank the operating LTPSs according to their environmental performance giving to the Greek society the necessary tools to determine their utilisation factor on top of the techno-economic criteria used up to now.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.