Abstract

Formalin baths are the most widely used treatment for ectoparasitic fish diseases. Nonetheless, their use in fish cages has been blamed for a number of problems. Although a considerable amount of literature has been produced on the short-term toxic effects of formaldehyde, there is virtually no data on the long-term side effects of the compound on non-target organisms. Therefore, the purpose of this research was to assess the long-term formaldehyde toxicity in Mediterranean mussel, Mytilus galloprovincialis, a common sentinel species that inhabits the area surrounding cage farms. Mussels were kept in a laboratory microenvironment at 20 ± 1 °C for 21 days and exposed to two different formaldehyde concentrations during experimentation: a low dose (L; 40 ppb) based on formaldehyde field measurements in the vicinity of Mediterranean cages, and a high dose (H; 400 ppb) generated by a factor of 10 of the previous dose. A multi-biomarker approach that included antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD), lipid peroxidation (MDA), lysosomal stability (NRRT), genotoxicity tests, condition index (CI), and stress on stress (SoS), was used to evaluate the toxicity of formaldehyde on mussels. The results of the selected tests indicate that formaldehyde does not cause chronic toxicity in mussels subjected to commonly measured concentrations in the aquatic environment following formalin bath treatments. Despite being defined as reversible, the stress brought by the high dose used seems to reduce the antioxidant activity of the tested organism. The significance of this research lies in its contribution to understanding the wider ecological effects of formaldehyde exposure. Moreover, the results highlight the need for further research on other non-target marine organisms to fully understand the cumulative effects of formaldehyde on marine ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.