Abstract

AbstractIn metallurgical processes, fluidized‐bed technology is gaining more importance because of its advantages. Processes with H2‐rich and CO‐rich reducing gases were developed for the reduction of iron ore fines (e.g. FINEX®). For improvement of these new technologies, greater knowledge about the chemical kinetics of iron ore reduction in fluidized beds is necessary. The scope of this work is to evaluate the limiting regime of the iron ore fines reduction. Therefore, experimental results of reduction tests were compared with theoretically investigated reduction rates. These reduction rates were based on a limitation either of mass transfer through the external gas film to the particle surface, diffusion in a porous product layer (pore diffusion and Knudsen diffusion), diffusion in a dense product layer (solid diffusion) or the phase boundary reaction. The phase boundary reaction was found to be the most likely limiting reaction regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.