Abstract

<p>The evaluation of the vibration performance of footbridges due to walking pedestrians is an issue of increasing importance in current footbridge design practice. The growing trend of slender footbridges with long spans and light materials has led to serviceability problems in lateral vibrations, which occur when the number of pedestrians reaches a “critical number”. Considering the mode of vibration in which the lateral instability is more likely to develop, the structural response depends on the modal characteristics of the footbridge; in particular, the natural frequency and the damping ratio. These modal parameters are stochastic variables, as it is not possible to determine them without a level of uncertainty. Thus, the purpose of this paper is to obtain the value of the lateral dynamic response of slender footbridges with a certain confidence level under uncertainty conditions. The uncertainties of those modal parameters are considered using a probabilistic approach. Both the natural frequency and the damping ratio are modelled as uncorrelated random variables that follow a predetermined probabilistic distribution function. Consequently, the structural response will also be described by a probabilistic distribution function, which can be estimated through Monte Carlo numerical simulations. As a result, the study allows the footbridge lateral response and the critical number of pedestrians to be calculated for different confidence levels and load scenarios, especially for crowd densities above the “critical number”.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.