Abstract

A complete evaluation of the experimental uncertainties of the KRITZ-2 series of critical and relative fission rate experiments was performed within the International Reactor Physics Experiment Evaluation Project. The uncertainties in the benchmark model keff are mainly due to uranium enrichment, plutonium content [mixed oxide (MOX) fuel], pitch, and boron isotopic composition. The largest contribution to the uncertainty in the benchmark model keff is from the uncertainty in the bias due to the homogenization of the particulate MOX fuel. In addition, uncertainties due to nuclear data libraries are presented.The keff’s calculated with various nuclear data libraries systematically underpredict the benchmark model keff by one to three times the standard experimental uncertainties. When taking into account uncertainties in nuclear data estimated using SCALE-6.0 and JENDL-4.0m covariances, the benchmark and calculated keff’s agree within 1σ of the total—experimental plus calculational—uncertainties. In contrast to the criticality benchmark data, the calculated relative fission rates agree very well with the experimental ones, especially when eliminating systematic errors due to normalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.