Abstract

BackgroundMutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors.MethodsIn order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations.ResultsNo mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined.ConclusionIn conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs.

Highlights

  • Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines

  • We have found that internal tandem duplication (ITD) c-KIT mutations in canine MCTs are significantly associated with aberrant KIT localization in neoplastic mast cells

  • No internal tandem duplications or deletions were identified in the juxtamembrane domain of c-KIT in any of the MCTs included in this study

Read more

Summary

Introduction

Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in the c-KIT proto-oncogene have been implicated in the pathogenesis of multiple neoplastic diseases, including mastocytosis, germ cell tumors, and gastrointestinal stromal tumors (GISTs) [18,19,20,21,22,23]. The locations of these c-KIT mutations vary between the different neoplastic diseases. Despite their variation in location both, juxtamembrane domain and kinase domains c-KIT mutations result in a constitutively activated KIT protein that is phosphorylated in the absence of the ligand [18,21,22,23]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call