Abstract
The recent development in radiosynthesis of the (11)C-carbamate function increases the potential of [(11)C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor (kappa-OR) with PET. In the present study, [(11)C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [(11)C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [(11)C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for kappa-OR (K(i) = 0.02 +/- 0.01 nM) with excellent selectivity over mu-OR (6 x 10(2)-fold) and) delta-OR (2 x 10(4)-fold). PET imaging revealed a volume of distribution (V(T)) pattern consistent with the known distribution of kappa-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [(11)C]GR103545 is selective for kappa-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Nuclear Medicine and Molecular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.