Abstract
The IS process to produce hydrogen from water requires efficient separation procedures. Effects of three typical membrane techniques (an electro-electrodialysis (EED), an electrochemical cell (EC), a hydrogen permselective membrane reactor (HPMR)) on total thermal efficiency were evaluated by heat/mass balance calculations based on the experimental data. The EED to concentrate HI solution is the most important membrane technique to obtain high thermal efficiency among the three techniques. The maximum thermal efficiency was 40.8% at 12.5 mol kg - H 2 O - 1 of HI molality after the EED. The second important technique is the EC at the reaction of H 2O, SO 2 and I 2. The maximum thermal efficiency was 38.9% at 15.3 mol kg - H 2 O - 1 of H 2SO 4 molality after the EC. The HPMR at the decomposition reaction of HI was effective to improve one pass conversion of HI to 76.4%, and the amounts of recycled HI was reduced by 91.5% using this membrane technique. The required heat at the reactor was small compared with that at the EED or at the EC. Total thermal efficiency was improved only 0.7% by the application of the HPMR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.