Abstract

The present study examined the application of a micro-indentation technique to the measurement of interfacial properties in fiber reinforced ceramic composites. Specific fiber/matrix systems included SiC/glass, SiC/macro-defect-free (MDF) cement, SiC/SiC, and mullite/glass. The effect of fiber coatings upon the interfacial properties was also investigated. These properties, which included the debond strength, interfacial shear stress, and residual axial fiber stress, were evaluated by measuring the force-displacement curves generated during load-unload cycles. Estimates of these three stress values were obtained by matching the experimental force-displacement curves with data predicted from an existing model. In general the SiC/glass composites exhibited the lowest values of the interfacial shear and debond stresses. The sliding characteristics of the SiC/MDF cement and SiC/SiC composites were strongly influenced by the residual axial stress and the nature of the fiber coating. In the case of the mullite/glass composite, the high values of the interfacial shear and debond stresses reduced the measurement sensitivity, thereby increasing the uncertainty in the estimates of the interfacial properties. 17 refs, 6 figs, 1 tab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.